Dynamical Localization for Unitary Anderson Models

نویسندگان

  • Eman Hamza
  • Alain Joye
  • Günter Stolz
چکیده

This paper establishes dynamical localization properties of certain families of unitary random operators on the d-dimensional lattice in various regimes. These operators are generalizations of one-dimensional physical models of quantum transport and draw their name from the analogy with the discrete Anderson model of solid state physics. They consist in a product of a deterministic unitary operator and a random unitary operator. The deterministic operator has a band structure, is absolutely continuous and plays the role of the discrete Laplacian. The random operator is diagonal with elements given by i.i.d. random phases distributed according to some absolutely continuous measure and plays the role of the random potential. In dimension one, these operators belong to the family of CMV-matrices in the theory of orthogonal polynomials on the unit circle. We implement the method of Aizenman-Molchanov to prove exponential decay of the fractional moments of the Green function for the unitary Anderson model in the following three regimes: In any dimension, throughout the spectrum at large disorder and near the band edges at arbitrary disorder and, in dimension one, throughout the spectrum at arbitrary disorder. We also prove that exponential decay of fractional moments of the Green function implies dynamical localization, which in turn implies spectral localization. These results complete the analogy with the self-adjoint case where dynamical localization is known to be true in the same three regimes. partially supported through MSU New Faculty Grant 07-IRGP-1192. partially supported through US-NSF grant DMS-0653374

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical localization for continuum random surface models

We prove Anderson localization and strong dynamical localization for random surface models in Rd .

متن کامل

Localization for Random Unitary Operators

We consider unitary analogs of 1−dimensional Anderson models on l2(Z) defined by the product Uω = DωS where S is a deterministic unitary and Dω is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of Uω is pure point almost surely for all val...

متن کامل

Strategies in localization proofs for one-dimensional random Schrödinger operators

Recent results on localization, both exponential and dynamical, for various models of one-dimensional, continuum, random Schrödinger operators are reviewed. This includes Anderson models with indefinite single site potentials, the Bernoulli– Anderson model, the Poisson model, and the random displacement model. Among the tools which are used to analyse these models are generalized spectral avera...

متن کامل

Fractional Moment Estimates for Random Unitary Operators

We consider unitary analogs of d−dimensional Anderson models on l2(Zd) defined by the product Uω = DωS where S is a deterministic unitary and Dω is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on parameters controlling the size of its off-diagonal elements. We adapt the method of Aizenman-Molchanov to get exponential estimates o...

متن کامل

Localization for One-dimensional, Continuum, Bernoulli-anderson Models

We use scattering theoretic methods to prove strong dynamical and exponential localization for one-dimensional, continuum, Anderson-type models with singular distributions; in particular, the case of a Bernoulli distribution is covered. The operators we consider model alloys composed of at least two distinct types of randomly dispersed atoms. Our main tools are the reflection and transmission c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009